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and P. Bustos2

1 Universidad de la República, Uruguay
∗ email: gtrinidad@fing.edu.uy

2 Universidad de Extremadura, Spain

Abstract. In this paper, we present some conceptual and experimen-
tal results obtained from the integration of a Robotics Cognitive Ar-
chitecture (RCA) with an embedded Physics simulator. The RCA used,
CORTEX, is based on a highly efficient, distributed working memory
(WM) called Deep State Representation (DSR). This WM already pro-
vides a basic ontology, state persistency, geometric and logical relation-
ships among elements and tools to read, update and reason about its
contents. The hypothesis that we want to explore here is that integrat-
ing a physics simulator into the architecture facilitates the enacting of a
series of additional functionalities that, otherwise, would require exten-
sive coding and debugging. Also, we characterize these functionalities in
broad types according to the kind of problem they tackle, including occlu-
sion, model-based perception, self-calibration, scene’s structural stability
and human activity interpretation. To show the results of these exper-
iments, we use CoppeliaSim as the embedded simulator, and a Kinova
Gen3 robotic arm as the real scenario. The simulator is kept synchro-
nized with the stream of real events and, depending on the current task,
several queries are computed, and the results projected to the working
memory, where the participating agents can take advantage of them to
improve the overall performance.

1 Introduction

According to G. Hesslow [16], the simulation hypothesis states that a simulated
action can elicit perceptual activity that resembles the activity that would have
occurred if the action had actually been performed. Closely related to this line
of thought, the field of Intuitive Physics has gained relevance in recent years.
Following Kubricht[2], ”...humans are able to understand their physical envi-
ronment and interact with objects and substances that undergo dynamic state
changes, making at least approximate predictions about how observed events will
unfold”. Moreover, recent experiments show evidence that humans might have
some sort of embedded mental game engine to help them reason about their
environment [1][5]. This research is tightly connected to Robotics, and has early
precedents in perception, with experiments showing internal visualization for
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navigation [20][19], and in architectures, with the adding to SOAR of an inter-
nal simulator [18]. Although some authors have raised objections to the theory,
arguing that it is only fruitful when both time and space scales are small [3],
continuous advances in simulation technology and computer power are pushing
the limits further with new demonstrations [12] [4].

In this paper, we present preliminary results on the integration of a PS
(Physics Simulator) in a Robotics Cognitive Architecture (RCA) and how it can
be used to solve known problems in robot perception. In particular, we aim to
embed a simulation-based geometric reasoning pipeline into CORTEX. We have
selected three use cases for this preliminary work that show the use of simula-
tion to: (I) correct object poses perceived by the robot according to a physically
plausible model, (II) detect pose perception errors and provide an automatic
recalibration procedure and (III) reason about the persistence of out of sight ob-
jects. The following sections describe in more detail the CORTEX architecture,
the use of simulation as an internal tool for complex scene understanding, and
a description of the performed experiments to validate our application of this
concept.

2 The CORTEX Architecture

The CORTEX cognitive architecture is a very dynamic proposal that has been
evolving since its conception in 2016 [9][10]. In its current version, CORTEX de-
fines a distributed architecture organized around a working memory (WM) and
a set of agents that have access to it. The working memory is called Deep State
Representation (DSR) and is formally a directed graph with vertices holding
metric or symbolic data, and whose edges represent geometric or logic predi-
cates. Vertices or nodes are concepts of the ontology, and edges are relationships
between them. Being a WM, DSR is intended to represent the current situation
involving the robot’s body and intentions, and the space and objects proximal
to it and relevant to the current task. Agents are responsible for creating and
maintaining this representation, implementing the functionality of perception
and motor modules, as well as the procedural, declarative and episodic memo-
ries of the Standard Model [23]

CORTEX establishes a way of operating within the working memory. The
node representing the robot is always connected through an RT (Rotation-
Translation geometric transformation) edge to one of the existing nodes rep-
resenting a zone of space, typically a room in indoor scenarios. This edge is
modified when the robot changes its location. From the robot, two distinct nodes,
body and mind are connected downwards. The rest of the robot’s parts are con-
nected to body according to their kinematic relationships. These parts include
rigid segments and pieces, joints, sensors and actuators. Raw data from sensors
is stored in the node’s attributes and made available to all agents. This is pos-
sible thanks to an efficient software design and implementation [6][7]. The other
branch, mind, holds the current intention (or goal) of the robot. This intention
is transformed into plans by deliberative agents, which create additional nodes
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Fig. 1. The figure shows an instance of the CORTEX architecture with a double con-
nection to the robot’s body and a simulator.

hanging from intention to store and advertise the current list of subgoals or ac-
tions. All agents are made aware of the current intention and plans and take the
actions of their choice to achieve the goal. Once this happens, the intention node
is deleted and the agents go back to their local activities. Intentions are managed
through a special agent called mission-manager that usually offers a GUI to the
roboticist, accepts new missions from an interacting human or uses a scheduler
to activate periodic missions. Figure 1 shows an abstract representation of a
CORTEX deployment and Fig 2 a real case scenario for social navigation. More
details on the implementation of CORTEX can be found in [11].

3 What can be obtained from an embedded simulator?

The working memory in CORTEX provides a persistent, structured state repre-
sentation that can be used to implement complex cognitive mediated behaviours.
However, there are many situations where direct perception and persistence are
not enough to solve simple problems. What might be needed is some sort of
pre-existing knowledge that could be injected into the WM, and provide a basic
kind of common-sense. This knowledge can come from different sources and have
various formal representations. A usual source in Cognitive Robotics is an on-
tology with rich relationships among concepts and an inference engine to answer
queries, as in [17]. In this work, we also want to obtain predicates relating objects
in the current scene, but we will focus on predicates that can be obtained from a
physics simulator synchronized with the working memory. To explore this path
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Fig. 2. Indoor example: Giraff robot navigation in a real scenario with people.

in a more systematic way, we have studied some examples and scenarios in which
this common-sense knowledge would clearly improve the resolution of the task.
The examples have been grouped into a set of informal categories that highlight
common patterns. Three of them will be discussed here, as aforementioned in
the Introduction, and the rest are briefly commented in the Conclusions section,
as current research lines.

4 Experimental Setup

The experimental scenario includes of a Kinova Gen3 robotic arm placed on a
table, and a set of 4cmx4cm cubes marked with a distinctive AprilTag [15] on
one face. The arm has a RGBD camera (Realsense D415) attached to the wrist.
Simulation is performed with the CoppeliaSim [14] using a choice of Physics
engines1. The working memory in CORTEX is initialized from a file with a
subgraph representing the robot and its sensors, and some additional nodes
representing the scenario. An example configuration is presented in Fig. 4, where
(a) shows the real world state and (c) how it is reproduced inside CoppeliaSim.
All simulations run at 20 hertz on an Intel i9 10th generation and a RTX3090
GPU.

Three CORTEX agents have been created and deployed for these experi-
ments.

1. arm-controller, this agent reads and inserts the gripper pose, read from
the Kinova arm, into the working memory in real-time as a SE(3) spatial
transformation from the arm base. It also injects the raw stream of RGBD

1 Bullet, ODE, Newton or Vortex



Initial Results with a Simulation Capable Robotics Cognitive Architecture 5

data obtained from the RealSense camera as an attribute of the hand camera
node.

2. scene-estimator, detects AprilTags and inserts model cubes into the work-
ing memory. The cubes hang from the node camera through an RT edge
with the estimated relative pose.

3. simulation-handler, is in charge of synchronizing the working memory
with the simulation bidirectionally. It reads cubes poses from the graph
to update the simulation, and publishes them back as Virtual RT edges.
Virtual RT edges are not part of the RT tree since they would induce loops.
Instead, they are treated as symbolic edges representing an opinion from the
simulator.

In CORTEX, agents run autonomously and can only communicate indirectly
through the working memory. An example state of the DSR is given in Fig. 3
with all the information provided by the presented agents.

Fig. 3. Example DSR state. Arm Controller writes camera readings as an attribute of
the hand camera node. Position estimations of the cubes are presented as RT edges
from hand camera, inserted by the Scene estimator agent. Virtual RT edges represent
geometric transformations from the origin to every cube, and are given by the Simula-
tion Handler agent.

We now describe three experiments, in which the use of the same integrated
simulator, facilitates the approach to three well-known problems in Robotics.

4.1 Model-based perception

The perception of objects in the world by the robot is always a noisy process,
subject to positioning errors. When the working scenario includes objects placed
on top of, or leaning over other objects, the perception errors will yield physi-
cally unfeasible configurations, with floating and intruding objects. The simula-
tor can apply the internal physics laws to quickly find a feasible configuration,
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and project it back to the WM. The result being that the robot perceives a
configuration of objects that has been corrected by a complex internal model
following the laws of Physics (Fig. 4). By embedding this pipeline within the
working memory, all agents gain access to this kind of physical reasoning, and a
better understanding of the observed scene. Examples of this functionality have
been shown in [12] [13]. In the following sections, we describe some ways that
this can improve the robot’s performance and precision.

(a) (b) (c)

Fig. 4. When the robot encounters state (a) using the RGBD information results in
estimation (b) which suggest poses where cubes appear to be floating above the table.
After applying the simulation physics, scene (c) is generated, correcting the initial
erroneous perceptions.

4.2 Self calibration

As a result of model-based perception, there is a residual error computed be-
tween the estimated pose and the model corrected pose. This error can be sys-
tematic and derived from an incomplete calibration of the robot’s sensors. Most
frequently, the cause can be a miss alignment of the sensing device in the kine-
matic chain, i.e. RGBD camera or LIDAR, since this are usually hard coded by
a human. In this case, the computed error can be used to re-calibrate the sensor
by computing the corresponding derivatives.

Let cri be the real world pose of cube i, pr the camera’s pose relative to its
parent frame and cei the pose for cube i estimated by the system. Using Ce (the
set of all cei ) the simulation is synchronized, and after its physics are applied,
csi is obtained, as the corrected pose for cube i. In the following experiment, we
aim to find a value for pr that minimizes the distance between Ce and Cs, using
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the simulator’s corrections as a way to approximate Cr. The error function used
is the average across all detected cubes of the distance described in equation 1,
and Scipy’s implementation of the Powell minimization method is executed.

dist(ci, cj) = ⟨croti , crotj ⟩2 + ||ctransi − ctransj || (1)

Recalibration can come as a consequence of two distinct scenarios: (i) A well
calibrated system which suffered some change (i.e. the sensor moved unexpect-
edly) or (ii) The initial sensor position is erroneous, and the correct one has to
be found. We will explore the first situation here, but the same process can be
applied for (ii).

Every time a new cube is detected, it is placed inside the simulation. In this
scenario, the robot re encounters previously placed cubes, but the discrepancy
between Ce and Cs (calculated with the error function) is too big. Many events
could explain this difference, but a recalibration is triggered nonetheless to eval-
uate if a change in the camera pose can eliminate the error. If a value for pr

that aligns Ce to Cs is found, it is taken as the new camera position from this
point on, since it is more likely to be the case than a coordinated reposition of
all cubes in the scene.

To evaluate this functionality, a simple scene is created, similar to the one
presented in Fig 4. After the cubes are detected and placed inside the simulation,
the kinematic chain to the camera (pr) is corrupted, in particular, the spatial
transformation from the arm’s tip to the camera is substituted by a random
one. This generates the desired effect, where all cubes remain visible but the
difference between detected (Ce) and remembered (Cs) positions is bigger than
expected. For a setup of 4 cubes and a top view, 50 trials were conducted. Figure
5 presents how the error evolved during the optimization process. This graph
shows that the method is capable of finding low error values for pr even when
starting from highly erroneous guesses. This convergence does not assure that
pr is in fact the real pose, but results show that the variance across trials is low
and close to the measured position of the camera (Fig. 6).

4.3 Occlusion

When the robot ceases to see an object that is being tracked, its existence and
continuity in the WM has to be updated by internal reasoning processes. As
a representative example of occlusion, a recent experiment [12] shows a human
holding a ball over two boxes and dropping it inside one of them. Then, the
boxes are interchanged, and the system is asked for the location of the ball. For
an RCA with an embedded simulator, the answer to the query is rather simple
if we let gravity and collision detection algorithms operate on the free ball.

Once the system inserts any object in the simulator, its position is always
reported in the WM as a Virtual RT. Unseen interactions are automatically
computed, and the position information is available at any time to any agent
that needs it.
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Fig. 5. Results of the recalibration after an undesired change in camera position. The
blue line presents the mean across trials with the 95% confidence interval, showing
how the system can find a low error solution despite initiating from highly erroneous
guesses.

Fig. 6. Values for translation (x, y, z) and rotation (raw, pitch, yaw) from the arm tip
to the camera found across trials.
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In their experiments, Sallami et al. [12] detect human intervention with a
state machine. When an object is presented in a configuration that violates
strongly the effect of gravity, they conclude that it is being held by someone.
Instead, we take advantage of the geometric reasoning provided by our setup,
and use it for grasp detection. A new agent has been developed which detects hu-
man hands using the MediaPipe Hands algorithm [8] in combination with depth
information, and places finger positions in the working memory. The simulation-
handler agent then inserts the fingertips into the simulation as simple spheres.
While one or more of these spheres is colliding with an object, gravity is not ap-
plied to it. Grasping and touching are not differentiated by the algorithm. This is
one example of how having a physical duplicate of reality can endow the system
with simple ways of detecting complex interactions, such as contact and gravity,
that would be hard to describe with the use of rules or ad hoc algorithms.

Using these elements, we performed a similar experiment replicating the fa-
mous game of cups and balls (Fig. 7). The robot is presented with a cube and
two boxes (Fig. 7(a)). One box is placed over the cube (Fig. 7(b)), and then the
boxes are interchanged (Fig. 7(d)). At one point, the box containing the cube is
moved over the edge of the table, dropping it to the floor (Fig. 7(e)). Thanks to
the synchronized simulator, the system can detect this situation and continues
to correctly track the cube position even though it is out of sight almost all the
time. Being able to determine where the cube is without using extensive sets of
rules or some case specific heuristics is a simple example of the advantages of
our approach. Using internal simulation, this information is readily accessible to
the robot.

5 Conclusions and future work

In this paper, we have presented some experiments performed with a Robotics
Cognitive Architecture embedded with a Physics simulator. The goal has been
to explore and test different uses of the new simulation capability, each of one
enhancing some desirable aspects of the architecture. In the three examples, the
underlying mechanism is the same, namely injecting back virtual RT edges with
poses corrected through the filter of the Physics engine. This preliminary work is
the first step in a long-term research focused on expanding the physical reasoning
capabilities of autonomous robots by adding geometrical common-sense (GCS).

According to the distributed and reactive nature of CORTEX, the virtual RT
edges are injected asynchronously by the simulator into the working memory.
Instead of requiring explicit cues to access this geometric knowledge, our system
is driven by the activity in the WM, and reacts to it by providing alternative RT
edges. This line of though will be exploited in the future, when other common-
sense agents handling declarative knowledge or episodic memories are developed.

In future work, we will expand the capabilities of the simulation by adopting
several simplifying shortcuts that make the simulation tractable in real time for
many objects [21]. This is needed to deal with more realistic situations. Besides,
simplification allows for the deployment of multiple simulations and the use of
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Cups and balls experiment. (a) Shows the initial configuration. When a human
hand is detected for the first time, a new node is inserted and two spheres representing
fingertips placed in the simulation (b). Grasp detection can be seen in (c) and (d)
where the WM has a grasping edge from the hand to the box being manipulated. In
(e) the box containing the cube is placed over the edge and the simulator shows the
cube falling to the ground.
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a probabilistic approach to learning that can lead to unsupervised training of
the robotic arm in cluttered situations. This in turn will ease the combination of
probabilistic and neural network learning, an approach that has been successfully
applied to other domains, such as program induction [22].

Another promising line of research targets the interpretation of human activ-
ities based on a combination of retargeting the perceived body into the robot’s
geometry, and the recovery of previous sensorimotor episodes in similar situ-
ations, i.e. grasping a box. When using a synchronized simulation where the
human hand is retargeted into the robot’s gripper, the physics engine can re-
produce the most similar gripper configuration in which the object is held, and
the gripper’s force sensors will generate the corresponding response to the sus-
pending effort. On one side, the predicate hold(gripper, object) can be evaluated
now as a simple function of relative distances and velocities; on the other, we
may say that the robot has a grounded interpretation of the current situation,
that would enable it to make a description, predict future outcomes or react
according to a purpose.
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11. Bustos, P. Garćıa, J. C. Cintas, R. Martinena, E Bachiller, P. Núñez P. Bandera A.
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